(本小题满分12分)已知F1(-2,0),F2(2,0),点P满足∣PF1∣-∣PF2∣=2,记点P的轨迹为E.(I)求轨迹E的方程(II)若直线过点F2且与轨迹E交于P,Q两点.无论直线绕点F2怎样转动,在x轴上总存在定点M(m,0),使MP⊥MQ恒成立,求实数m的值.
数列{an}中,,试证:.
设数列{an}的前n项和为Sn,且方程x2﹣anx﹣an=0有一根为Sn﹣1,n=1,2,3,…. (Ⅰ)求a1,a2; (Ⅱ){an}的通项公式.
用数学归纳法证明不等式:+++…+>1(n∈N*且n>1).
已知函数f(x)=x3﹣x2++,且存在x0∈(0,),使f(x0)=x0. (1)证明:f(x)是R上的单调增函数; (2)设x1=0,xn+1=f(xn);y1=,yn+1=f(yn),其中n=1,2,…,证明:xn<xn+1<x0<yn+1<yn; (3)证明:<.
平面内有n条直线,其中无任何两条平行,也无任何三条共点,求证:这n条直线把平面分割成(n2+n+2)块.