(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,且PD平面ABCD,PD=AB=1,E,F分别是PB,AD的中点(I)证明:EF//平面PCD(II)求二面角B-CE-F的大小
(本题12分)已知函数,其中. (Ⅰ)若曲线在点处的切线方程为,求函数的解析式; (Ⅱ)讨论函数的单调性; (Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围.
(本题10分)在直角坐标系xOy中,曲线C1的参数方程为 (α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2. (1)求C2的参数方程; (2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.
(本题10分)已知函数 (1)判断函数的奇偶性 (2)若在上为减函数,求的取值范围。
(本题10分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女, (1)若从甲校和乙校报名的教师中各选1名,求选出的两名教师性别相同的概率 (2)若从报名的6名教师中任选2名,求选出的两名教师来自同一学校的概率
(本题10分)已知在直角坐标系中,圆C的参数方程为为参数),以为极轴建立极坐标系,直线的极坐标方程为 (1)写出直线的直角通方程(2)求圆C截直线所得的弦长。