(本小题满分10分)甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下.(1)将图中( )填上适当的值,并求甲车从A到B的速度.(2)求从甲车返回到与乙车相遇过程中y与x的函数关系式,自变量取值范围。(3) 求出甲车返回时行驶速度及AB两地的距离.
先化简,再求值:, 其中,.
如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC. 求证:AB=DE.
如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.
如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点. (1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标; (2)当直线PO与⊙C相切时,求∠POA的度数; (3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.
在中,∠ACB=90°,AC>BC,D是AC边上的动点,E是BC边上的动点,AD=BC,CD="BE" . (1) 如图1,若点E与点C重合,连结BD,请写出∠BDE的度数; (2)若点E与点B、C不重合,连结AE 、BD交于点F,请在图2中补全图形,并求出∠BFE的度数.