(本小题满分10分)甲乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留一小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为60km/h,两车间距离y(km)与乙车行驶时间x(h)之间的函数图象如下.(1)将图中( )填上适当的值,并求甲车从A到B的速度.(2)求从甲车返回到与乙车相遇过程中y与x的函数关系式,自变量取值范围。(3) 求出甲车返回时行驶速度及AB两地的距离.
如图是由16个边长为1的小正方形排成的,其中小正方形的顶点称为格点,请以格点为端点,画出一条线段,使线段的长度为.
在4×4的正方形网格中,已将图中的四个小正方形图上阴影(如图),请在下列两个图形中各选一个小正方形也图上阴影,使得整个阴影部分组成的图形成轴对称图形.
(满分13分)如图12.1,已知抛物线经过坐标原点O和x轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且BC=1,AD=2,AB=3.(1)求m的值及该抛物线的函数关系式;(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示). ①当t为何值时,△PNC是以PN为底边的等腰三角形;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(满分11分)如图11,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连结CF.(1)求证:AF=CD;(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;(3)在(2)的条件下,求sin∠ABF的值.
(满分8分)在如图10所示的正方形网格中,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(-1,-1). (1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C,并写出点B2的坐标;(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出放大后的△AB3C3.