(本小题满分8分) 已知:如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2).
在平面直角坐标系中,点O为原点,抛物线y=ax2+bx(其中-1≤a<0)经过A(3,n),AB⊥y轴于B,抛物线交直线AB于M.(1)若n=1,AB=3BM,求抛物线所对应的函数关系式;(2)若n=a+b,抛物线与x轴另一个异于原点的交点为C,过点A作AP∥OM交直线MC于点P,当△OPM的面积最大时,求sin∠MOP的值.
如图,四边形ABCD是⊙O的内接四边形,,点E、F分别是弦AD、DC上的点.(1)若∠ABE=∠CBF,BE=BF.求证:BD是⊙O的直径.(2)若,∠D=2∠EBF=90°,AE=ED=2.求DF的长.
已知点A(m,p),B(n,q)(m<n<0)在动点C(,a)(k≠0)所形成的曲线上.若p+q=-b-2,.试比较p和q的大小,并说明理由.
定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”.如果关于x的一元二次方程x2-4x+5m=mx+5与x2+x+m-1=0互为“友好方程”,求m的值.
如图,在正方形ABCD中,点M是BC边上的任意一点,连接AM,并将线段AM绕点M顺时针旋转90°得到线段MN,过N作NP⊥C D于点P,连接BP.求证:四边形BMNP是平行四边形