如图,在直角坐标平面内,为原点,抛物线经过点(,),且顶点(,)在直线上.(1)求的值和抛物线的解析式;(2)如在线段上有一点,满足,在轴上有一点(,),联结,且直线与轴交于点.①求直线的解析式; ②如点M是直线上的一个动点,在x轴上方的平面内有另一点N,且以O、E、M、N为顶点的四边形是菱形,请求出点N的坐标.(直接写出结果,不需要过程.)
如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-x+3的图象与y轴、x轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
如图,已知AB是⊙O的直径,点C、D在⊙O上,过D点作PF∥AC交⊙O于F,交AB于点E,∠BPF=∠ADC.(1)求证:BP是⊙O的切线;(2)求证:AE•EB=DE•EF;(3)当⊙O的半径为,AC=2,BE=1时,求BP的长.
如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式.(2)求△BOC的面积.(3)P是x轴上的点,且△PAC的面积与△BOC的面积相等,求P点的坐标.
准备两组相同的牌,每组三张大小一样,三张牌的牌面数字分别为-1,0,1.从每组中各模出一张牌.(1)两张牌的牌面数字和等于1的概率是多?(2)两张牌的牌面数字和等于几的概率最大?(3)两张牌的牌面数字和大于0的概率是多少
儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省14元,已知书包标价比文具盒标价的3倍少6元,那么书包和文具盒的标价各是多少元.