甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从道备选题中一次性抽取道题独立作答,然后由乙回答剩余题,每人答对其中题就停止答题,即闯关成功.已知在道备选题中,甲能答对其中的道题,乙答对每道题的概率都是.(Ⅰ)求甲、乙至少有一人闯关成功的概率;(Ⅱ)设甲答对题目的个数为ξ,求ξ的分布列及数学期望.
设是定义在R上的函数 (1)f(x)可能是奇函数吗? (2)当a=1时,试研究f(x)的单调性
已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求 (1)BC边上的中线AD所在的直线方程; (2)△ABC的面积
某电厂冷却塔外形是如图所示的双曲线的一部分绕其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A′是双曲线的顶点,C,C′是冷却塔上口直径的两个端点,B,B′是冷却塔下底直径的两个端点,已知AA′="14" m,CC′="18" m,BB′="22" m,塔高20 m. (1)建立坐标系并写出该曲线的方程; (2)求冷却塔的容积(精确到10 m3,塔壁厚度不计,π取3.14)
直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.椭圆C以A、B为焦点且经过点D. (1)建立适当坐标系,求椭圆C的方程; (2)若点E满足,问是否存在不平行AB的直线l与椭圆C交于M、N两点且,若存在,求出直线l与AB夹角的范围,若不存在,说明理由
求双曲线y=上任意一点P处的切线与两坐标轴围成的三角形面积