已知:如图,AB=3,AC=4,AB⊥AC,BD=12,CD=13,(1)求BC的长度;(2)证明:BC⊥BD.
(本题满分l2分)⊙O直径AB=4,∠ABC=30°,BC=4。D是线段BC中点,(1)试判断D与⊙O的位置关系并说明理由;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O切线。
某超市的某种商品现在的售价为每件50元,每周可以卖出500件。现市场调查反映:如果调整价格,每涨价1元,每周要少卖出10件。已知该种商品的进价为每件40元,问如何定价,才能使利润最大?最大利润是多少?(每件商品的利润=售价-进价)
小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米(注意:根据光的反射定律:反射角等于入射角).
(本题满分l0分)如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.(1)请写出四个不同类型的正确结论;① _____________;②__________;③__________;④______.(2)若BC=8,ED=2,求⊙O的半径.
如图,已知△ADE和△ABC是位似图形,∠A=30°,DE垂直平分AC,且DE=2.(1)求∠C的度数. (2)求BC的长度.