(本小题满分14分)在矩形ABCD中,已知,在AB、AD、CD、CB上分别截取AE、AH、CG、CF都等于,(1)将四边形EFGH的面积S表示成的函数,并写出函数的定义域(2)当为何值时,四边形EFGH的面积最大?并求出最大面积
已知函数,其中为实数, (1)若,求函数的最小值; (2)若方程在上有实数解,求的取值范围; (3)设…,均为正数,且,求证:.
已知椭圆:的离心率,是椭圆上两点,是线段的中点,线段的垂直平分线与椭圆相交于两点. (1)求直线的方程; (2)是否存在这样的椭圆,使得以为直径的圆过原点?若存在,求出该椭圆方程;若不存在,请说明理由.
如图,在四棱锥中, ,,,平面平面,是线段上一点,,,. (1)证明:平面; (2)设三棱锥与四棱锥的体积分别为与,求的值.
有甲、乙两个学习小组,每个小组各有四名学生,在一次数学考试中,成绩情况如下表:
(1)用茎叶图表示两组的成绩情况; (2)分别从甲、乙两组中随机选取一名学生的成绩,求选取的这两名学生中,至少有一名学生的成绩在90以上的概率.
已知数列的前项和为,且满足:,. (1)求数列的通项公式; (2)设,求数列的前项和为.