(本小题满分14分) 已知函数有且只有两个相异实根0,2,且 (Ⅰ)求函数的解析式; (Ⅱ)已知各项均不为1的数列满足,求通,(Ⅲ)设,求数列的前项和.
(本题满分12分)“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
现计划在这次场外调查中按年龄段选取9名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.(参考公式:其中)
(本题满分12分)在中,已知角的对边分别为,且成等差数列.(1)若,求的值;(2)求的取值范围.
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.(Ⅰ)求抛物线的标准方程;(Ⅱ)直线,与圆相切且与抛物线交于不同的两点,当为直角时,求△OMN的面积。
如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,.(Ⅰ)求证:直线EA⊥平面PAB;(Ⅱ)求直线AE与平面PCD所成角的正切值.
已知圆C的圆心在坐标原点,且被直线3x+4y+15=0截得的弦长为8 (Ⅰ)试求圆C的方程;(Ⅱ)当P在圆C上运动时,点D是P在x轴上的投影,M为线段PD上一点,且|MD|=|PD|.求点M的轨迹方程;