(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵,其中,若点在矩阵的变换下得到点,(Ⅰ)求实数a的值; (Ⅱ)求矩阵的特征值及其对应的特征向量.(2)(本小题满分7分)选修4-4:坐标系与参数方程已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线的极坐标方程是,曲线的参数方程是是参数). (1)写出曲线的直角坐标方程和曲线的普通方程; (2)求的取值范围,使得,没有公共点.
(本小题满分10分)选修4-5:不等式选讲 已知函数. (1)当时,求函数的定义域; (2)若关于的不等式的解集是,求的取值范围.
(本小题满分10分)选修4-1:几何证明选讲 如图所示,已知与⊙相切,为切点,为割线, 弦,、相交于点,为上一点,且·. (1)求证:; (2)求证:·=·.
(本小题满分12分) 设定义在区间上的函数的图象为,是上的任意一点,为坐标原点,设向量=,,,当实数λ满足x="λ" x1+(1-λ) x2时,记向量=λ+(1-λ).定义“函数在区间上可在标准下线性近似”是指 “恒成立”,其中是一个确定的正数. (1)求证:三点共线; (2)设函数在区间[0,1]上可在标准下线性近似,求的取值范围; (3)求证:函数在区间上可在标准下线性近似. (参考数据:=2.718,)
(本小题满分12分) 如果两个椭圆的离心率相等,那么就称这两个椭圆相似.已知椭圆与椭圆相似,且椭圆的一个短轴端点是抛物线的焦点. (Ⅰ)试求椭圆的标准方程; (Ⅱ)设椭圆的中心在原点,对称轴在坐标轴上,直线与椭圆交于两点,且与椭圆交于两点.若线段与线段的中点重合,试判断椭圆与椭圆是否为相似椭圆?并证明你的判断.