(1)(本小题满分7分)选修4-2:矩阵与变换已知矩阵,其中,若点在矩阵的变换下得到点,(Ⅰ)求实数a的值; (Ⅱ)求矩阵的特征值及其对应的特征向量.(2)(本小题满分7分)选修4-4:坐标系与参数方程已知直线的极坐标方程为,圆的参数方程为(其中为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆上的点到直线的距离的最小值.
(本小题满分12分) 已知(其中,为实数). (I)若在处取得极值为2,求、的值; (II)若在区间上为减函数且,求的取值范围.
(本小题满分12分) 已知椭圆的左、右焦点分别为、,离心率,右准线方程为. (I)求椭圆的标准方程; (II)过点的直线与该椭圆交于M、N两点,且,求直线的方程.
(本小题满分12分)(文科做前两问;理科全做.) 某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换. (I)在第一次灯棍更换工作中,求不需要更换灯棍的概率; (II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率; (III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
(本小题满分12分) 已知等比数列中,,,且公比. (Ⅰ)求数列的通项公式; (Ⅱ)设,求的最大值及相应的值.
(本小题满分12分)
如图所示,在正三棱柱中,,,是的中点,在线段上且.