.已知函数, (1)若函数在上是减函数,求实数的取值范围(2)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由(3)当时,证明:
(本题满分12分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时和每台产值如下表:
问每周生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少千元?
(本题满分12分)设是公差的等差数列,是各项都为正数的等比数列,且,.(1)求数列和的通项公式;(2)设…),求数列的前项和.
(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1) 由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应抽取几名?
为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为,如图所示。(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。那么,从药物释放开始,至少需要经过多少小时后,学生才能回到教室。
(10分)已知函数(1)用“五点法”作出这个函数在一个周期内的图象;(2)函数图象经过怎样的变换可以得到 的图象?