求证:
设函数.(Ⅰ)当,解不等式,;(Ⅱ)若的解集为,,求证:
已知曲线的参数方程: (为参数), 曲线上的点对应的参数,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.(Ⅰ)求曲线的极坐标方程;(Ⅱ)已知直线过点,且与曲线于两点,求的范围.
如图所示, 为圆的切线, 为切点,,的角平分线与和圆分别交于点和. (Ⅰ)求证; (Ⅱ)求的值.
已知函数(). (Ⅰ)若函数在定义域内单调递增,求实数的取值范围; (Ⅱ)设,,()是图象上的任意两点,若,使得,求证: .
已知椭圆:,是椭圆的上、下焦点,是椭圆上任意一点,且的最大值是3,最小值为2. (Ⅰ)求椭圆的标准方程; (Ⅱ)若,且过的动直线交椭圆于,求 的面积的最大值.