(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点分别是椭圆的左、右焦点,在直线(分别为椭圆的长半轴和半焦距的长)上的点,满足线段的中垂线过点.过原点且斜率均存在的直线、互相垂直,且截椭圆所得的弦长分别为、.(Ⅰ)求椭圆的方程;(Ⅱ)求的最小值及取得最小值时直线、的方程.
中央电视台星光大道某期节目中,有5位实力均等的选手参加比赛,经过四轮比赛决出周冠军(每一轮比赛淘汰l位选手).(1)求甲、乙两位选手都进入第三轮比赛的概率;(2)求甲选手在第三轮被淘汰的的概率.
已知数列满足:,其中为数列的前项和.(1)试求的通项公式;(2)若数列满足:,试求的前项和.
在中,角A、B、C的对边分别为、、,且,,边上中线的长为.(1) 求角和角的大小;(2) 求的面积.
已知抛物线,直线截抛物线C所得弦长为.(1)求抛物线的方程;(2)已知是抛物线上异于原点的两个动点,记若试求当取得最小值时的最大值.
已知函数在处取得极小值.(1)求的值;(2)若在处的切线方程为,求证:当时,曲线不可能在直线的下方.