(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.(Ⅰ)求抛物线和椭圆的标准方程;(Ⅱ)过点的直线交抛物线于、两不同点,交轴于点,已知为定值.(Ⅲ)直线交椭圆于两不同点,在轴的射影分别为,,若点满足:,证明:点在椭圆上.
(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点. (1)证明:; (2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,求两只手中所取的球颜色不同的概率; (2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
(本小题满分12分)在锐角三角形中,、、分别是角、、的对边,且. (1)求角的大小; (2)若,求的最大值.
(本小题满分10分)选修4—5:不等式选讲 设. (1)求的解集; (2)若不等式对任意实数恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,圆的参数方程(为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (1)求圆的极坐标方程; (2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.