(本小题满分12分)某区组织群众性登山健身活动,招募了名师生志愿者,将所有志愿者现按年龄情况分为等六个层次,其频率分布直方图如图所示: 已知之间的志愿者共人.(Ⅰ)求和之间的志愿者人数;(Ⅱ)已知和之间各有名英语教师,现从这两个层次各选取人担任接待工作,设两组的选择互不影响,求两组选出的人选中都至少有1名英语教师的概率是多少?(Ⅲ)组织者从之间的志愿者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的数量为,求的概率和分布列.
(本小题满分12分)如图,正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点 .(1)求二面角B1MNB的正切值;(2)求证:PB⊥平面MNB1;(3)若正方体的棱长为1,画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离 .
(本小题满分12分)如图, 在直角梯形中,∥点分别是的中点,现将折起,使,(1)求证:∥平面;(2)求点到平面的距离.
(本小题满分10分)已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且.求证:(1)四边形EFGH是梯形;(2)FE和GH的交点在直线AC上 .
(本小题满分8分)已知直线l垂直于直线3x-4y-7=0,直线l与两坐标轴围成的三角形的周长为10,求直线l的方程
已知数列满足,试证明:(1)当时,有;(2).