如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.
已知:DC∥AB DF平分∠CDB ,BE平分∠ABD 求证 BE∥DF在空格处填角 括号内填推理的依据 证明∵DC∥AB(已知) ∴∠ABD= () 又∵DF平分∠CDB BE平分∠ABD(已知) ∴∠1=∠2=() ∴∠1=∠2() ∴BE∥DF()
已知:在△ABC中 ∠A =∠B =2∠C,求各内角的度数并判断△ABC的形状
甲、乙两人准备在一段长为1200 m的笔直公路上进行跑步,甲、乙跑步的速度分别为4 和 6 ,起跑前乙在起点,甲在乙前面100 m处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y(m)与时间t(s)的函数图像是()
如图,在平面直角坐标系中有一矩形ABCO,B点的坐标为(12,6),点C、A在坐标轴上.⊙A、⊙P的半径均为1,点P从点C开始在线段CO上以1单位/秒的速度向左运动,运动到点O处停止.与此同时,⊙A的半径每秒钟增大2个单位,当点P停止运动时,⊙A的半径也停止变化.设点P运动的时间为t秒.(1)在0<t<12时,设△OAP的面积为s,试求s与t的函数关系式.并求出当t为何值时,s为矩形ABCO面积的;(2)在点P的运动过程中,是否存在某一时刻,⊙A与⊙P相切,若存在求出点P的坐标,若不存在,说明理由.
李明的爸爸从市场上卖回来一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1m的正方形后,剩下的部分刚好能围成一个容积为15m3的无盖长方体运输箱,且此长方体运输箱底面的长比宽多2m,现已知购买这种铁皮每平方米需30元,问李明爸爸购回这张矩形铁皮共花了多少钱?