已知向量=(1,2),=(cosa,sina),设=+t(为实数).(1)若a=,求当||取最小值时实数的值; (2)若⊥,问:是否存在实数,使得向量–和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.(3)若⊥,求实数的取值范围A,并判断当时函数的单调性.
(本小题满分12分)已知四棱锥P-ABCD中,底面ABCD为菱形,且平面PAC垂直于底面ABCD,中, (Ⅰ)求证:平面PBD平面PAC (Ⅱ)若BD=PA=2,求四棱锥P-ABCD的体积
(本小题满分12分)已知点列、、,,, (Ⅰ)求证数列为等差数列; (Ⅱ)求数列的通项公式.
(本小题满分12分) 一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图). (1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,求月收入在(元)段应抽出的人数; (2)为了估计该社区3个居民中恰有2个月收入在(元)的概率,采用随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,我们用0,1,2,3,4表示收入在(元)的居民,剩余的数字表示月收入不在(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,计算该社区3个居民中恰好有2个月收入在(元)的概率.
(本小题满分12分) 在△ABC中,a、b、c分别是角A、B、C所对的边,满足 (Ⅰ)求角B的大小; (Ⅱ)若,求函数的值域.
如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点; (Ⅰ)若点的坐标为;求椭圆的方程; (Ⅱ)证明:直线与椭圆只有一个交点。