(本小题满分12分)已知是公比为的等比数列,且成等差数列.(Ⅰ)求的值;(Ⅱ)设是以2为首项,为公差的等差数列,其前项和为,求使成立的最大的的值.
甲、乙两地相距s km , 汽车从甲地匀速行驶到乙地,速度不得超过c km/h ,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(km/h)的平方成正比,比例系数为b;固定部分为a元。把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;为了使全程运输成本最小,汽车应以多大速度行驶?
方程的两根都大于2,求实数的取值范围。
已知二次函数满足,,求的取值范围。
已知,求的最大值。
求的最小值。