文(本小题满分12分)已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图. (I)若△POM的面积为,求向量与的夹角。 (II)试证明直线PQ恒过一个定点。
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.(ⅰ)求a1,a2的值;(ⅱ)求数列{an}的通项公式.
已知函数f(x)=aln x=(a为常数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;(2)求函数f(x)的单调区间;(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.
若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1:=1,A1,A2分别为椭圆C1的左、右顶点.椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”. (1)求椭圆C2的方程;(2)设P为椭圆C2上异于A1,A2的任意一点,过P作PQ⊥x轴,垂足为Q,线段PQ交椭圆C1于点H.求证:H为△PA1A2的垂心.(垂心为三角形三条高的交点)
如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC外的地方种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形的PQRS面积为S2. (1)用a,θ表示S1和S2;(2)当a固定,θ变化时,求的最小值.