文(本小题满分12分)已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图. (I)若△POM的面积为,求向量与的夹角。 (II)试证明直线PQ恒过一个定点。
⑴用综合法证明:;⑵用反证法证明:若均为实数,且,,,求证中至少有一个大于0.
已知=,=,若存在非零实数k,t使得,,且⊥,试求:的最小值.
已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.
已知.(1)求函数的值域;(2)求函数的最大值和最小值.
已知扇形的周长为30,当它的半径R和圆心角各取何值时,扇形的面积S最大?并求出扇形面积的最大值.