文(本小题满分12分)已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图. (I)若△POM的面积为,求向量与的夹角。 (II)试证明直线PQ恒过一个定点。
已知椭圆C:+=1(a>b>0)经过点A,且离心率e=. (Ⅰ)求椭圆C的方程; (Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.
.在△ABC中,a,b,c分别是角A,B,C的对边,且角B,A,C成等差数列. (Ⅰ)若a2-c2=b2-mbc,求实数m的值; (Ⅱ)若a=,求△ABC面积的最大值.
已知数列的前n项和为,且. (Ⅰ)求数列通项公式; (Ⅱ)若,,求数列的前项和.
焦点分别为(0,)和(0,-)的椭圆截直线y=3x-2所得椭圆的弦的中点的横坐标为,求此椭圆方程.
已知集合A=,B=. (Ⅰ)当a=2时,求AB; (Ⅱ)求使B A的实数a的取值范围.