(11·西宁)(本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为 (-1,0).如图17所示,B点在抛物线图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.(1)求证:△BDC≌△COA;(2)求BC所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
【探究发现】按图中方式将大小不同的两个正方形放在一起,分别求出阴影部分(⊿ACF)的面积。(单位:厘米,阴影部分的面积依次用S1、S2、S3表示) 1.S1= cm2; S2= cm2; S3= cm2.2.归纳总结你的发现:【推理反思】按图中方式将大小不同的两个正方形放在一起,设小正方形的边长是bcm,大正方形的边长是acm,求:阴影部分(⊿ACF)的面积。【应用拓展】1.按上图方式将大小不同的两个正方形放在一起,若大正方形的面积是80cm2,则图中阴影三角形的面积是 cm2.2.如图(1),C是线段AB上任意一点,分别以AC、BC为边在线段AB同侧构造等边三角形⊿ACD和等边三角形⊿CBE,若⊿CBE的边长是1cm,则图中阴影三角形的面积是 cm2.3.如图(2),菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是 (1) (2)
如图,在□ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P. (1)求证:△ABE≌△DCF; (2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.
如图,△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使CF=BE,连接EF,交BC于点D。求证DE=DF.
某超市经销一种水果,其成本为40元/千克。市场调查发现,按50元/千克销售,一个月可售出500千克,若售价每涨1元,月销售量就减少10千克。针对这种销售情况,超市在月成本不超过10000元的情况下,月销售利润达到8000元,销售单价应定为多少元?
如图,有一个面积为150㎡的长方形鸡场,鸡场的一边靠墙(墙长18,米),墙的对面有一个2米宽的门,另外三边(门除外)用篱笆围成,篱笆总长为33米,求鸡场的长与宽分别是多少?