(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有 .函数,数列的首项. (Ⅰ)求数列的通项公式; (Ⅱ)令求证:是等比数列并求通项公式; (Ⅲ)令,,求数列的前n项和.
已知函数() (1)若在点处的切线方程为,求的解析式及单调递减区间; (2)若在上存在极值点,求实数的取值范围.
已知数列的前项和,数列满足. (1)求数列的通项; (2)求数列的通项; (3)若,求数列的前项和.
如图,已知为平行四边形,,,,点在上,,,与相交于.现将四边形沿折起,使点在平面上的射影恰在直线上. (1)求证:平面; (2)求折后直线与平面所成角的余弦值.
已知关于的一元二次函数,设集合,分别从集合P和Q中随机取一个数作为和 (1)求函数有零点的概率; (2)求函数在区间上是增函数的概率。
已知数列满足:其中,数列满足: (1)求; (2)求数列的通项公式; (3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.