(本小题满分12分)已知各项均为正数的数列中,是数列的前项和,对任意,有 .函数,数列的首项. (Ⅰ)求数列的通项公式; (Ⅱ)令求证:是等比数列并求通项公式; (Ⅲ)令,,求数列的前n项和.
李先生家住小区,他工作在科技园区,从家开车到公司上班路上有、两条路线(如图),路线上有、、三个路口,各路口遇到红灯的概率均为;路线上有、两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走路线,求最多遇到1次红灯的概率;(Ⅱ)若走路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.
已知函数在处的切线的斜率为1.(为无理数,)(Ⅰ)求的值及的最小值;(Ⅱ)当时,,求的取值范围;(Ⅲ)求证:.(参考数据:)
抛物线:上一点到抛物线的焦点的距离为,为抛物线的四个不同的点,其中、关于y轴对称,,, , ,直线平行于抛物线的以为切点的切线. (Ⅰ)求的值; (Ⅱ)证明:; (Ⅲ)到直线、的距离分别为、,且,的面积为48,求直线的方程.
如图,为矩形,为梯形,平面平面,,.(Ⅰ)若为中点,求证:∥平面;(Ⅱ)求平面与所成锐二面角的大小.
设角是的三个内角,已知向量,,且.(Ⅰ)求角的大小; (Ⅱ)若向量,试求的取值范围.