先化简,再求值:,其中.
有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A 菱形,B 平行四边形,C 线段,D 角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是 ;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.
漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:
(1)设运往A地的水仙花x(件),总运费为y(元),试写出y与x的函数关系式;(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?
如图,▱ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有 对全等三角形;(2)请写出其中一对全等三角形: ≌ ,并加以证明.
解方程:x2﹣4x+1=0.
如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[ , ];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;【探究】经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a].