如图8,AE是位于公路边的电线杆,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD,用于撑起拉线.已知公路的宽AB为8米,电线杆AE的高为12米,水泥撑杆BD高为6米,拉线CD与水平线AC的夹角为67.4°.求拉线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).(参考数据:sin67.4°≈ ,cos67.4°≈ ,tan67.4°≈)
解方程:.
化简.
如图(1)四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE. (1)求证:△ABC≌△ADE; (2)求证:CA平分∠BCD; (3)如图(2),设AF是△ABC的BC边上的高,求证:EC=2AF.
已知x=﹣1,求下列问题: (1)证明:x2+2x=1; (2)利用(1)的结论,化简x4+2x3+2x﹣1; (3)试判断x=﹣1是不是方程﹣1=的解?
如图,A、F、E、B四点共线,AC⊥CE,BD⊥DF,AE=BF,AC=BD. (1)求证:△ACE≌△BDF; (2)求证:△ACF≌△BDE.