(本小题7分)喜欢数学的小伟沿笔直的河岸BC进行数学实践活动,如图8, 河对岸有一水文站A,小伟在河岸B处测得ÐABD=45°,沿河岸行走300米后到达C处, 在C处测得ÐACD=30°,求河宽AD.(最后结果精确到1米.已知:»1.414,»1.732, »2.449,供选用)
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
已知:如图,在⊿ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点。求证:CF=DE
已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,求证:BE=DF
如图,在⊿ABC中,∠C=90°点D在BC上,DE垂直平分AB,且DE=DC,求∠B的度数。