(本题8分)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌兖分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.
用任意2个全等的三角形能拼成平行四边形吗?自己画两个全等的三角形试一试,把你拼的图形画出来,说明理由.
如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,. 理解与作图: (1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH. 计算与猜想: (2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值? 启发与证明: (3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为(时),两车之间的距离为(千米),图中的折线表示从两车出发至快车到达乙地过程中与之间的函数关系. (1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离; (2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中关于的函数的大致图象.
已知:用2辆型车和1辆型车装满货物一次可运货10吨;用1辆型车和2辆型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题: (1)1辆型车和1辆型车都装满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案; (3)若型车每辆需租金100元/次,型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
如图,为线段上一动点,分别过点作,,连接.已知,,,设. (1)用含的代数式表示的长; (2)请问点满足什么条件时,的值最小? (3)根据(2)中的规律和结论,请构图求出代数式的最小值.