(本题满分18分)第一题满分5分,第二题满分5分,第三题满分8分.如图,有一公共边但不共面的两个三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分别交AB,AC,A1B,A1C于点D,E,D1,E1。(1)讨论这三条交线ED,CB, E1 D1的关系。(2)当BC//平面DEE1D1时,求的值;(3)当BC不平行平面DEE1D1时, 的值变化吗?为什么?
(原创)已知数列{}是公比为(<0)的等比数列 ⑴比较与的大小; ⑵若,,求使恒成立的取值范围.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限). (Ⅰ)求椭圆的方程; (Ⅱ)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,. (1)求证:平面; (2)求证:平面; (3)求四面体的体积.
在中,角的对边分别为,已知. (Ⅰ)求角的大小; (Ⅱ)若,求△的面积.
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点. (1)若、R且,证明:函数必有局部对称点; (2)若函数在区间内有局部对称点,求实数的取值范围; (3)若函数在R上有局部对称点,求实数的取值范围.