第一题满分4分,第二题满分6分,第三题满分6分.已知动圆过定点P(1,0),且与定直线相切。(1)求动圆圆心的轨迹M的方程;(2)设过点P,且倾斜角为的直线与曲线M相交于A,B两点,A,B在直线上的射影是。求梯形的面积;(3)若点C是(2)中线段上的动点,当△ABC为直角三角形时,求点C的坐标。
给定一个数列,在这个数列里,任取项,并且不改变它们在数列中的先后次序,得到的数列的一个阶子数列. 已知数列的通项公式为,等差数列,,是数列的一个3阶子数列. (1)求的值; (2)等差数列是的一个阶子数列,且,求证:; (3)等比数列是的一个阶子数列,求证:.
已知函数,其中为常数. (1)若,求曲线在点处的切线方程; (2)若,求证:有且仅有两个零点; (3)若为整数,且当时,恒成立,求的最大值.
如图,在平面直角坐标系中,椭圆E:的离心率为,直线l:与椭圆E相交于A,B两点,,C,D是椭圆E上异于A,B两点,且直线AC,BD相交于点M,直线AD,BC相交于点N. (1)求a,b的值; (2)求证:直线MN的斜率为定值.
下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:) (1)按下列要求建立函数关系式: (i)设,将S表示成的函数; (ii)设,将S表示成的函数; (2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
如图,在四棱锥P-ABCD中,,,,. (1)求证:平面; (2)若M为线段PA的中点,且过三点的平面与PB交于点N,求PN:PB的值.