(本小题满分10分)在复习《反比例函数》一课时,同桌的小明和小芳有一个间题观点不一致,小明认为如果两次分别从l到6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点的情形;(2)分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确。
两条直线相交,四个交角中的一个锐角(或一个直角)称为这两条直线的“夹角”(如图),如果在平面上画 L 条直线,要求它们两两相交,并且“夹角”只能是 15 ° , 30 ° , 45 ° , 60 ° , 75 ° , 90 ° 其中之一,问:
(1) L 的最大值是什么?
(2)当 L 取最大值时,问所有的“夹角”的和是多少?
在一个平面上有 2017 条直线,最多能将这一平面分成多少个部分.
平面上有 10 条直线,无任何三条交于一点,欲使它们出现 31 个交点,怎样安排才能办到?(只要求画出符合条件的 10 条直线)
能否在平面上画出 7 条直线(任意 3 条都不共点),使得它们中的每条直线都恰好与另 3 条直线相交?如果能,请画出一例,如果不能,请简述理由.
平面上 7 条直线两两相交,试证明:在所有的交角中,至少有一个角小于 26 ° .