(本小题满分10分)在复习《反比例函数》一课时,同桌的小明和小芳有一个间题观点不一致,小明认为如果两次分别从l到6六个整数中任取一个数,第一个数作为点的横坐标,第二个数作为点的纵坐标,则点在反比例函数的的图象上的概率一定大于在反比例函数的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点的情形;(2)分别求出点在两个反比例函数的图象上的概率,并说明谁的观点正确。
如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点. (1)求该抛物线的函数解析式; (2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由. (3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D. (1)求证:AB是⊙O的切线; (2)若CD的弦心距为1,BE=EO,求BD的长.
某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元. (1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出与之间的函数关系式; (2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?
如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点. (1)求此反比例函数和一次函数的解析式; (2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围; (3)求△ABO的面积。
如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?