某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:
甲:92,95,96,88,92,98,99,100
乙:100,87,92,93,9■,95,97,98
由于保存不当,学生乙有一次成绩的个位数字模糊不清,
(1)求甲成绩的平均数和中位数;
(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;
(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.
如图,在平行四边形 ABCD 中, AB = 3 ,点 E 为线段 AB 的三等分点(靠近点 A ) ,点 F 为线段 CD 的三等分点(靠近点 C ) ,且 CE ⊥ AB .将 ΔBCE 沿 CE 对折, BC 边与 AD 边交于点 G ,且 DC = DG .
(1)证明:四边形 AECF 为矩形;
(2)求四边形 AECG 的面积.
如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度 y ( cm ) 与注水时间 x ( min ) 之间的关系如图②所示,根据图象解答下列问题:
(1)图②中折线 EDC 表示 槽中水的深度与注入时间之间的关系;线段 AB 表示 槽中水的深度与注入时间之间的关系;铁块的高度为 cm .
(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)
小明在 A 点测得 C 点在 A 点的北偏西 75 ° 方向,并由 A 点向南偏西 45 ° 方向行走到达 B 点测得 C 点在 B 点的北偏西 45 ° 方向,继续向正西方向行走 2 km 后到达 D 点,测得 C 点在 D 点的北偏东 22 . 5 ° 方向,求 A , C 两点之间的距离.(结果保留 0 . 1 km .参数数据 3 ≈ 1 . 732 )
解方程: x 2 x - 3 + 5 3 x - 2 = 4 .