在平面直角坐标系中,已知三个顶点的坐标分别为(1)画出,并求出所在直线的解析式。(2)画出绕点顺时针旋转后得到的,并求出在上述旋转过程中扫过的面积。
计算 1) 2)3) 4)
解下列不等式(组),并把解集表示在数轴上1) 2) 3) 4)
如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于点(8,8),直线与轴的交点为C,与y轴的交点为B.(1)求这个二次函数的解析式与B点坐标;(2)为线段上的一个动点(点与不重合),过作轴的垂线与这个二次函数的图象交于D点,与轴交于点E.设线段PD的长为,点的横坐标为t,求与t之间的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,在线段上是否存在点,使得以点P、D、B为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
(本题10分)如图,已知等边三角形ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F。(1)判断EF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长。(结果保留根号)
在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的斜度线,斜度线与地板夹角为倾角为,一般情况下,倾角愈小,楼梯的安全度就越高。如图(2),设计者为提高楼梯安全度,要把楼梯倾角由减至,这样楼梯占用地板的长度增加到,已知=4m,∠=45°,∠=30°,求楼梯占用地板的长度增加了多少?