(本小题满分12分)有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1、2、3、4.(Ⅰ)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;(Ⅱ)摸球方法与(Ⅰ)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
已知,不等式的解集为.(1)求的值;(2)若对一切实数恒成立,求实数的取值范围.
已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别是、,直线与曲线相交于、两点,射线与曲线相交于点,射线与曲线相交于点,求的值.
如图:是⊙的直径,是弧的中点,⊥,垂足为,交于点.(1)求证:=;(2)若=4,⊙的半径为6,求的长.
已知(1)当时,求的极大值点;(2)设函数的图象与函数的图象交于、两点,过线段的中点做轴的垂线分别交、于点、,证明:在点处的切线与在点处的切线不平行.
已知椭圆(a>b>0)的离心率为,且过点().(1)求椭圆E的方程;(2)设直线l:y=kx+t与圆(1<R<2)相切于点A,且l与椭圆E只有一个公共点B.①求证:;②当R为何值时,取得最大值?并求出最大值.