(本小题满分12分)已知是首项为19,公差为-2的等差数列,为的前项和.(1)当n为何值时最大(用两种方法);(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和。
(本小题满分14分)已知定义域为[0, 1]的函数f(x)同时满足: ①对于任意的x[0, 1],总有f(x)≥0; ②f(1)=1; ③若0≤x1≤1, 0≤x2≤1, x1+x2≤1, 则有f(x1+x2) ≥ f(x1)+f(x2).(1)试求f(0)的值; (2)试求函数f(x)的最大值;(3)试证明:当x, nN+时,f(x)<2x.
(本小题满分13分)设函数(I)若当时,取得极值,求的值,并讨论的单调性;(II)若存在极值,求的取值范围,并证明所有极值之和大于.
(本小题满分12分)
我国加入WTO后,根据达成的协议,若干年内某产品关税与市场供应量P的关系允许近似的满足:(其中t为关税的税率,且).(x为市场价格,b、k为正常数),当t=时的市场供应量曲线如图
(本小题满分12分)为了收集2009年7月“长江日全食”天象的有关数据,国家天文台在成都、武汉各设置了A、B两个最佳观测站,共派出11名研究员分别前往两地实地观测。原计划向成都派出3名研究员去A观测站,2名研究员去B观测站;向武汉派出3名研究员去A观测站,3名研究员去B观测站,并都已指定到人。由于某种原因,出发前夕要从原计划派往成都的5名研究员中随机抽调1人改去武汉,同时,从原计划派往武汉的6名研究员中随机抽调1人改去成都,且被抽调的研究员仍按原计划去A观测站或B观测站工作。求:(I)派往两地的A、B两个观测站的研究员人数不变的概率; (II)在成都A观测站的研究员从数X的分布列和数学期望。
(本小题满分12分)已知函数 ,且函数与的图像关于直线对称,又 , .(Ⅰ) 求的值域;(Ⅱ) 是否存在实数m,使得命题 和 满足复合命题 为真命题?若存在,求出m的取值范围;若不存在,说明理由.