(本小题满分8分)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连结EG、CG,如图(1),易证 EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.
某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
(1)根据记录的数据可知该厂星期四生产自行车 辆; (2)根据记录的数据可知该厂本周实际生产自行车 辆; (3)产量最多的一天比产量最少的一天多生产自行车 辆; (4)该厂实行每周计件工资制,每生产一辆车可得30元,若超额完成任务,则超过部分每辆另奖25元,那么该厂工人这一周的工资总额是多少元?
有理数、、在数轴上的位置如图, (1)判断正负,用“>”或“<”填空:c-b 0,a+b 0,a-c 0. (2)化简:|c-b|+|a+b|-|a-c|.
已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-(1)求A-2B;(2)若A-2B的值与x的取值无关,求y的值.
化简 (1)3x2+2x-5x2+3x (2)4(m2+n)+2(n-2m2) (3)-3(2x2-xy)-(x2+xy-6) (4)-(6a3b+2b2)+(4a3b-8b2) (5)先化简,再求值:3x2y-[2x2y-(2xy-3x2y)]+3xy2,其中x=3,y=-
已知抛物线与轴交于点,且.(1)求抛物线的解析式.(2)抛物线的对称轴为,与y轴的交点为C,顶点为D,点C关于的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标。