甲、乙两个盒子中装有质地、大小相同的小球.甲盒中有2个白球、1个黄球和1个蓝球;乙盒中有1个白球、2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.
A(1,0),B(3,0)。(1)求抛物线的解析式; 所有点P的坐标;(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小。若存在,求出点M的坐标;若不存在,请说明理由。
如图所示,矩形ABCD,AB>AD,E在AD上,将△ABE沿BE折叠后,A点正好落在CD上的点F。(1)用尺规作出E、F;(2)若AE=5,DE=3,求折痕BE的长;(3)试判断四边形ABFE是否一定有内切圆。
有研究发现,人体在注射一定剂量的某种药物后的数小时内,体内血液中的药物浓度(即血药浓度)y毫克/升是时间t(小时)的二次函数,已知某病人的三次化验结果如下表:(1)求y与t的函数关系式;(2)在注射后的第几小时,该病人体内的血药浓度达到最大?最大浓度是多少?(3)该病人在注射后的几个小时内,体内的血药浓度超过0.3毫克/升?
小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分,当所转到的数字之积为偶数时,小刚得1分这个游戏双方公平吗?若公平,请说明理由;若不公平,如何修改规则才能使游戏对双方公平?
如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上(1)填空:∠ABC=____________°,BC=_____________;(2)判断△ABC,△DEF是否相似,并证明你的结论。