(本小题满分12分)已知椭圆经过点,一个焦点是.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
.(本小题满分12分) 已知函数 (1)讨论函数的单调区间; (2)求函数在[0,2]上的最大值和最小值.
(本小题满分10分) 用平行于四面体的一组对棱、的平面截此四面体(如图). (1)求证:所得截面是平行四边形; (2)如果.求证:四边形的周长为定值.
(本小题满分12分) 已知函数. (I)若,求函数的极值; (II)若对任意的,都有成立,求的取值范围.
(本小题满分12分) 已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点,过点P(2,1)的直线与椭圆C相交于不同的两点A、B. (Ⅰ)求椭圆C的方程; (Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分) 设函数. (Ⅰ)求的最小值; (Ⅱ)若对恒成立,求实数的取值范围.