(本小题满分12分)已知椭圆经过点,一个焦点是.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的两个交点为、,点在直线上,直线、分别与椭圆交于、两点.试问:当点在直线上运动时,直线是否恒经过定点?证明你的结论.
已知数列{an}的前n项和为Sn,点(n,)在直线y=x+上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9项和为153.(1)求数列{an},{bn}的通项公式;(2)设cn=,数列{cn}的前n项和为Tn,求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.
在△ABC中,BC=,AC=3,sin C=2sin A.(1)求AB的值;(2)求sin的值.
(本题满分12分12分)设a,b∈R+,a+b=1.(1)证明:ab+≥4+=4;(2)探索、猜想,将结果填在括号内;a2b2+≥( _________ );a3b3+≥( _________ );(3)由(1)(2)你能归纳出更一般的结论吗?请证明你得出的结论.
设函数,其中。(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集为 ,求a的值。
对,记,函数(1)求,;(2)作出的图像;(3)若关于的方程有且仅有两个不等的解,求实数的取值范围.