已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.
设数列的前项和为,.已知,且当时,. (1)求的值; (2)证明:为等比数列; (3)求数列的通项公式.
如图,三角形 P D C 所在的平面与长方形 A B C D 所在的平面垂直, P D = P C = 4 , A B = 6 , B C = 3 .
(1)证明: B C / / 平面 P D A ; (2)证明: B C ⊥ P D ; (3)求点 C 到平面 P D A 的距离.
某城市 100 户居民的月平均用电量(单位:度),以 [ 160 , 180 ) , [ 180 , 200 ) , [ 200 , 220 ) , [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 分组的频率分布直方图如图.
(1)求直方图中 x 的值; (2)求月平均用电量的众数和中位数; (3)在月平均用电量为 [ 220 , 240 ) , [ 240 , 260 ) , [ 260 , 280 ) , 280 , 300 的四组用户中,用分层抽样的 方法抽取 户居民,则月平均用电量在 [ 220 , 240 ) 的用户中应抽取多少户?
已知. (1)求的值; (2)求的值.
已知函数
(Ⅰ)求的定义域,并讨论的单调性; (Ⅱ)若,求在内的极值.