在某电视台举办的《上海世博会知识有奖问答比赛》中,甲、乙、丙三人同时回答一道问题,已知甲回答对这道题的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是,且三人答对这道题的概率互不影响.(1)求乙、丙两人各自回答对这道题的概率;(2)求答对该题的人数的分布列.
2011年国际象棋比赛中,胜一局得2分,负一局得0分,和棋一局得1分,在甲对乙的每局比赛中,甲胜、负、和的概率依次为0.5,0.3,0.2.现此二人进行两局比赛,得分累加. (I)求甲得2分的概率; (II)求乙至少得2分的概率.
已知函数 (I)求函数的最小正周期; (II)求函数上的最大值与最小值.
已知等差数列的每一项都有求数列的前n项和
在数列和中,,,,其中且,.设,,试问在区间上是否存在实数使得.若存在,求出的一切可能的取值及相应的集合;若不存在,试说明理由.
学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且. (1)求文娱队的队员人数; (2)写出的概率分布列并计算