(本小题满分12分)如图,函数y=2sin(πx+φ),x∈R,(其中0≤φ≤)的图象与y轴交于点(0,1)。 (1)求φ的值;(2)若,求函数y=2sin(πx+φ)的最值,及取得最值时的值;(3)设P是图象上的最高点,M、N是图象与x轴的交点,求的余弦值。
(本题12分)设函数的定义域为A,集合,(1)求;(2)若,求的取值范围。
(本题12分)已知函数,当时,;当时,.(1)为何值时的解集为;(2)求在内的值域.
(本题12分)对于函数为奇函数(Ⅰ)求的值;(Ⅱ)用函数单调性定义及指数函数性质证明: 在上是增函数。
(本题12分)某一中校办工厂生产学生校服的固定成本为20000元,每多生产一件需要增加投入100元,已知总收益R(x)满足函数,其中x是校服的月产量,问:(1)将利润表示为关于月产量x的函数.(2)当月产量为何值时,工厂所获利润最大?最大利润为多少元?(总收益=总成本+利润)