(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
(文科)已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是. (I)证明为常数; (II)若动点满足(其中为坐标原点),求点的轨迹方程.
(理科)已知以原点为中心的椭圆的一条准线方程为,离心率,是椭圆上的动点. (1)若点的坐标分别是,求的最大值; (2)如图,点的坐标为,是圆上的点,点是点在轴上的射影,点满足条件:,求线段的中点的轨迹方程.
(文科)设直线与椭圆相交于A、B两个不 同的点,与x轴相交于点F. (I)证明: (II)若F是椭圆的一个焦点,且,求椭圆的方程。
(理科)已知抛物线的准线与轴交于点,为抛物线的焦点,过点斜率为的直线与抛物线交于两点。 (1)若,求的值; (2)是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,请说明理由。
某车间共有12名工人,需配备两种型号的机器,每台A型机器需2人操作,每天耗电30千瓦时,能生产出价值4万元的产品;每台B型机器需3人操作,每天耗电20千瓦时,能生产出价值3万元的产品,现每天供应车间的电量不多于130千瓦时,问这个车间如何配备这两种型号的机器,使每天的产值最大?最大产值是多少万元?