(本小题满分12分)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
中内角、、的对边分别为、、,向量m,n且mn (1)求锐角的大小; (2)如果,求的面积的最大值。
设数列前项和为,点均在函数图象上。 (1)求数列的通项公式; (2)设,是数列的前项和,求使得对所有都成立的最小正整数。
(本小题满分12分) 椭圆G:的左、右焦点分别为,M是椭圆上的一点,且满足=0. (1)求离心率e的取值范围; (1)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5. ①求此时椭圆G的方程; ②设斜率为的直线l与椭圆G相交于不同的两点A、B,Q为AB的中点, 问:A、B两点能否关于过点、Q的直线对称?若能,求出k的取值范 围;若不能,请说明理由.
(本小题满分12分) 设数列的前项和为已知 (1)设,证明数列是等比数列; (2)求数列的通项公式;(3)若,为的前n项和,求证:.
(本小题满分12分)已知函数. (1)当时,证明函数只有一个零点; (2)若函数在区间上是减函数,求实数的取值范围