.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
如图,已知点A(6,0),点P(x,y)在第一象限,且x+y=8,设△OPA的面积S. (1)求S关于x的函数解析式; (2)求x的取值范围; (3)求S=12时,P点的坐标.
如图(1),将两块直角三角板的直角顶点C叠放在一起. (1)试判断∠ACE与∠BCD的大小关系,并说明理由; (2)若∠DCE=30°,求∠ACB的度数; (3)猜想∠ACB与∠DCE的数量关系,并说明理由; (4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗? (不需说明理由)
小丽一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶若干h后,途中在加油站加油若干L.油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示。根据图象回答下列问题: (1)小汽车行驶________h后加油, 中途加油__________L; (2)求加油前油箱余油量Q与行驶时间t的函数关系式; (3)如果加油站距景点200km,车速为80km/h,要到达目的地,油箱中的油是否够用?请说明理由.
有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?
在边长为1的方格纸中建立直角坐标系,如图所示,O、A、B三点均为格点. (1)直接写出线段OB的长; (2)将△OAB绕点O沿逆时针方向旋转90°得到△OA′B′。请你画出△OA′B′,并求在旋转过程中,点B所经过的路径弧BB′的长度.