为了庆祝中国共产党建党九十周年,襄阳市各单位都举行了“红歌大赛”。某中学将参加本校预赛选手的成绩(满分为100分,得分为整数.最低分为80分.且无满分)分成四组.并绘制了如下的统计图(图5).请根据统计图的信息解答下列问题.(1)参加本校预赛选手共________人:(2)参加预赛选手成绩的中位数所在组的范围是________:(3)成绩在94.5分以上的预赛选手中,男生和女生各占一半.学校从中随机确定2名参加市“红歌大赛”.则恰好是一名男生和一名女生的概率为________。
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B. (1)①直接写出点B的坐标;②求抛物线解析式. (2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标; (3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长.
如图,四边形是的内接矩形,如果的高线长,底边长,设,, (1)求关于的函数关系式; (2)当为何值时, 四边形的面积最大?最大面积是多少?
如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,,OB= 4,OE=2. (1)求直线AB和反比例函数的解析式; (2)求△OCD的面积; (3)直接写出使一次函数值小于反比例函数值的的取值范围.
为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)