已知椭圆 G : x 2 4 + y 2 = 1 .过点 ( m , 0 ) 作圆 x 2 + y 2 = 1 的切线l交椭圆 G 于 A , B 两点. (I)求椭圆 G 的焦点坐标和离心率; (II)将 A B 表示为 m 的函数,并求 A B 的最大值.
如右图所示,一座圆拱桥,当水面在图位置甲时,拱顶离水面2 m,水面宽 12 m,当水面下降1 m后,水面宽多少米? 甲
已知圆的方程为x2+y2=r2,圆内有定点P(a,b),圆周上有两个动点A,B,使PA⊥PB,求矩形APBQ的顶点Q的轨迹方程.
如图,经过圆x2+y2=4上任意一点P作x轴的垂线,垂足为Q,求线段PQ中点M的轨迹方程.
等腰三角形的顶点是A(4,2),底边的一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.
圆C过点P(1,2)和Q(-2,3),且圆C在两坐标轴上截得的弦长相等,求圆C的方程.