已知函数 f ( x ) = ln x - a x 2 + ( 2 - a ) x . (I)讨论 f ( x ) 的单调性; (II)设 a > 0 ,证明:当 0 < x < 1 a 时, f ( 1 a + x ) > f ( 1 a - x ) ; (III)若函数的图像与x轴交于 A , B 两点,线段 A B 中点的横坐标为 x 0 , 证明: f ` ( x 0 ) < 0
化简(1) (2)
已知,求的值
已知 a为实数,= (1)求导函数 (2)若 , 求 在 [-2, 2] 上的最大值和最小值; (3)若 在 (-∞, -2]和 [2, +∞) 上都是递增的,求的取值范围.
已知函数 =与 的图象都过点 P(2, 0),且 在点P 处有公共切线,求 、的表达式.
复数的共轭复数在复平面上的对应点在第一象限内,求实数的取范围。