P ( x 0 , y 0 ) ( x 0 ≠ ± a ) 是双曲线 E : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 上一点, M , N 分别是双曲线 E 的左、右定点,直线 P M , P N 的斜率之积为 1 5 . (1)求双曲线的离心率; (2)过双曲线 E 的右焦点且斜率为1的直线交双曲线于 A , B 两点, O 为坐标原点, C 为双曲线上的一点,满足 O C ⇀ = λ O A ⇀ + O B ⇀ ,求 λ 的值.
(本小题满分12分)已知函数,的部分图象如图所示. (1)求函数的解析式; (2)若,求的值.
(本小题满分12分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2. (1)若F为PC的中点,求证:PC⊥平面AEF; (2)求四棱锥P-ABCD的体积V.
(本小题满分12分)设等差数列的前项和为,且(是常数,),. (1)求的值及数列的通项公式; (2)证明:.
(本小题满分10分)选修4-5:不等式选讲 对于任意的实数和,不等式恒成立,记实数的最大值是. (1)求的值;(2)解不等式.
(本小题满分10分)【选修4—1:几何证明选讲】 在直角坐标系中,以原点为极点,轴的正半轴为极轴建坐标系,已知曲线,已知过点的直线的参数方程为(为参数),直线与曲线分别交于两点。 (1)写出曲线和直线的普通方程; (2)若成等比数列,求的值.