(本小题满分12分)聊城市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分13分)某校书法兴趣组有名男同学,,和名女同学,,,其年级情况如下表:
现从这名同学中随机选出人参加书法比赛(每人被选到的可能性相同). (1)用表中字母列举出所有可能的结果; (2)设为事件“选出的人来自不同年级且性别相同”,求事件发生的概率.
(本小题满分14分)已知函数,,函数的图象在点处的切线平 行于轴. (1)确定与的关系; (2)试讨论函数的单调性; (3)证明:对任意,都有成立.
(本小题满分14分)已知等差数列的公差为,前项和为,且,,成等比数列. (1)求数列的通项公式; (2)令,求数列的前项和.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形. (1)求椭圆的标准方程; (2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,, ①证明:平分线段(其中为坐标原点), ②当值最小时,求点的坐标.
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点. (1)证明平面; (2)求与平面所成角的正弦值; (3)求二面角的余弦值.