(本小题满分14分)已知函数处取得极值.(1)求实数a的值,并判断上的单调性;(2)若数列满足;(3)在(2)的条件下,记求证:
已知命题p:函数在区间上递减;命题q:方程有两个不相等的负实数根.如果p或q为真,p且q为假,求实数m的取值范围.
已知z为复数,z+2和均为实数,其中是虚数单位.(Ⅰ)求复数z;(Ⅱ)若复数在复平面上对应的点在第一象限,求实数a的取值范围.
(本小题满分12分)已知函数,且函数的图象关于原点对称,其图象在x=3处的切线方程为(1)求的解析式;(2)是否存在区间[m,n],使得函数的定义域和值域均为[m,n],且其解析式为 的解析式?若存在,求出这样一个区间[m,n];若不存在,则说明理由.
(本小题满分12分)双曲线,一焦点到其相应准线的距离为,过点A(0,-b),B(a,0)的直线与原点的距离为(1)求该双曲线的方程(2)是否存在直线与双曲线交于相异两点C,D,使得C,D两点都在以A为圆心的同一个圆上,若存在,求出直线方程;若不存在说明理由.
本小题满分12分)
已知斜三棱柱ABC—A1B1C1,在底面ABC上的射影恰为AC的中点D,又知