(本小题满分14分)已知函数处取得极值.(1)求实数a的值,并判断上的单调性;(2)若数列满足;(3)在(2)的条件下,记求证:
如图,在三棱锥 P - A B C 中, A C = B C = 2 , ∠ A C B = 90 ° , A P = B P = A B , P C ⊥ A C .
(Ⅰ)求证 P C ⊥ A B ; (Ⅱ)求二面角 B - A P - C 的大小; (Ⅲ)求点 C 到平面 A P B 的距离.
(本小题共13分)已知函数()的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.
设函数 f ( x ) = ln x 1 + x - ln x + ln ( x + 1 ) . (Ⅰ)求 f ( x ) 的单调区间和极值; (Ⅱ)是否存在实数 a ,使得关于 x 的不等式 f ( x ) ≥ a 的解集为(0,+ ∞ )?若存在,求 a 的取值范围;若不存在,试说明理由.
在数列 a n , b n 中, a 1 = 2 , b 1 = 4 ,且 a n , b n , a n + 1 成等差数列, b n , a n + 1 , b n + 1 成等比数列( n ∈ N * ) (Ⅰ)求 a 2 , a 3 , a 4 及 b 2 , b 3 , b 4 ,由此猜测 a n , b n 的通项公式,并证明你的结论; (Ⅱ)证明: 1 a 1 + b 1 + 1 a 2 + b 2 + . . . + 1 a n + b n < 5 12 .
在直角坐标系 x O y 中,点 P 到两点 0 , - 3 , 0 , 3 的距离之和等于4,设点 P 的轨迹为 C ,直线 y = k x + 1 与 C 交于 A , B 两点. (Ⅰ)写出 C 的方程; (Ⅱ)若 O A ⇀ ⊥ O B ⇀ ,求 k 的值; (Ⅲ)若点 A 在第一象限,证明:当 k > 0 时,恒有 O A ⇀ > O B ⇀ .