如图,在边长为10的正三角形纸片ABC的边AB,AC上分别取D,E两点,使沿线段DE折叠三角形纸片后,顶点A正好落在边BC上(设为P),在这种情况下,求AD的最小值.
如图是一个斜三棱柱,已知、平面平面、、,又、分别是、的中点. (1)求证:∥平面; (2)求二面角的大小.
设P是⊙O:上的一点,以轴的非负半轴为始边、OP为终边的角记为,又向量.且. (1)求的单调减区间;网 (2)若关于的方程在内有两个不同的解,求的取值范围.
某公司招聘员工采取两次考试(笔试)的方法:第一试考选择题,共10道题(均为四选一题型),每题10分,共100分;第二试考解答题,共3题.规则是:只有在一试中达到或超过80分者才获通过并有资格参加二试,参加二试的人只有答对2题或3题才能被录用.现有甲、乙两人参加该公司的招聘考试.且已知在一试时:两人均会做10道题中的6道;对于另外4道题来说,甲有两题可排除两个错误答案、有两题完全要猜,乙有两题可排除一个错误答案、有一题可排除两个错误答案、有一题完全要猜.进入二试后,对于任意一题,甲答对的概率是、乙答对的概率是. (1)分别求甲、乙两人能通过一试进入二试的概率、; (2)求甲、乙两人都能被录用的概率.
已知函数的图象与直线相切于点. (1)求实数和的值; (2)求的极值.
已知函数的反函数为,设的图象上在点处的切线在y轴上的截距为,数列{}满足:.(1)求数列{}的通项公式; (2)在数列中,仅最小,求的取值范围; (3)令函数数列满足,求证:对一切n≥2的正整数都有.