22.选修4-1:几何证明选讲如图:四边形是边长为的正方形,以为圆心,为半径的圆弧与以为直径的圆交于点,连接并延长交于点(1)求证:是的中点(2)求线段的长
已知与抛物线交于A、B两点, (1)若|AB|="10," 求实数的值。 (2)若, 求实数的值。
已知双曲线的离心率为,右准线方程为。 (Ⅰ)求双曲线C的方程; (Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求实数m的值。
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。 (1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
如图,平面,,,,分别为的中点. (I)证明:平面; (II)求与平面所成角的正弦值.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。 求证: (1)PA∥平面BDE (2)平面PAC平面BDE