. 如图,四棱锥P-ABCD的侧面PAD垂直于底面ABCD,∠ADC=∠BCD=,PA=PD=AD=2BC=2,CD,M在棱PC上,N是AD的中点,二面角M-BN-C为. (1)求的值; (2)求直线与平面BMN所成角的大小.
(本题14分)过点向直线作垂线,垂足为.求直线的方程.
(本题14分) 已知集合A={},集合B={1,2},且,求的取值的集合.
(本题12分)解不等式.
(本题12分)设全集,设集合,, 求:(1) (2)
(本题12分) 如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。 (Ⅰ)若∠PAB=30°,求以MN为直径的圆方程; (Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。