设M点的坐标为(x,y).(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中取随机取一个数作为y,求M点落在y轴的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:,所表示的平面区域内的概率
已知函数,为实数)有极值,且在处的切线与直线平行.(1)求实数a的取值范围;(2)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存在,请说明理由;(3)设求证:.
已知f(x)=x3+mx2-x+2(m∈R)如果函数的单调减区间恰为(-,1),求函数f(x)的解析式;(2)若f(x)的导函数为f '(x),对任意x∈(0,+∞),不等式f '(x)≥2xlnx-1恒成立,求实数m的取值范围.
设函数,其中为常数.(1)当时,判断函数在定义域上的单调性;(2)若函数的有极值点,求的取值范围及的极值点;(3)求证对任意不小于3的正整数,不等式都成立.
已知函数,曲线在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若时,有极值.(I) 求a、b、c的值;(II) 求在[-3,1]上的最大值和最小值.
已知常数、、都是实数,函数的导函数为(Ⅰ)设,求函数的解析式;(Ⅱ)如果方程的两个实数根分别为、,并且问:是否存在正整数,使得?请说明理由.